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The coefficient of heat transfer between a bed of slag pellets (mean 
diameter 0.78, 1.2, and 2.2 ram) and a vertical surface has been 
determined for the case of relative motion. The experiments were con- 
ducted at small contact times (0.002 < Fo < 1) in several atmospheres 
(air, CO z, He). 

To a cons iderable  extent the heat t r a n s f e r  between 
a surface  and a bed of d i spersed  ma te r i a l  is de t e r -  
mined by the p a r t i c l e - s u r f a c e  contact t ime.  As it 
decreases ,  the heat  t r a n s f e r  inc reases ,  tending in the 
l imi t  to some constant  value [1-4,  6]. At re la t ive ly  
smal l  contact t imes  (Fo < 0.1) the t empera tu re  g ra -  
dient  is concentra ted ma in ly  near  the contact point 
between the par t i c le  and the h e a t - t r a n s f e r  surface.  
Exper iments  in a vacuum have shown [1] that the heat 
t r a n s f e r  through the contact points (spots) is negl igibly 
smal l .  At smal l  Fo the heat is t r a n s f e r r e d  at the 
in ter face  ma in ly  through the in te rmedia te  layer  of gas 
nea r  the par t i c le  contact point. 

In [2, 3] we de te rmined  the coefficient  of heat 
t r a n s f e r  between a surface  and an individual par t ic le  
numer ica l ly .  The calculat ions showed that as the 
contact t ime decreases ,  the h e a t - t r a n s f e r  coefficient 
i nc r ea se s  and tends to a constant  value de te rmined  
by the thermophys ica l  cha rac t e r i s t i c s  of the gas-  
par t ic le  sys tem.  These conclusions have been par t i a l ly  
conf i rmed exper imenta l ly ,  but only for a i r - s a n d  [4] 
and a i r - s l a g  pe l le t  [6] sys tems .  Data on the heat 
t r a n s f e r  between a bed of glass  pel lets  and a surface 
in re la t ive  motion [5] have been obtained for seve ra l  
gases .  However, in these exper iments  the contact 
t ime was large (Fo > 1) and, accordingly,  the l imi t ing  
value of the h e a t - t r a n s f e r  coefficient was not reached.  

~./0 z 

5 
4 

3 

2 

f 
ae 

x - -  3 

'# - -  5 

'e - -  6 

+ - - 7  
a ~ 6  
B--,,q 

q2 R~ a$aa [ 

§ 

J 
z~ 

Id_+ _ % ~ §  

I I 
"~---~"  = 

II I I 
# 8 1 0  20 ~0 ~r 

Fig. 1. Hea t - t r ans fe r  coefficient (W/m2*deg) as a 
funct ion of contact  t ime  (sec): 1, 3, 8) CO 2, a i r ,  and He, 
respec t ive ly ,  d = 1.2 mm;  5, 4, 7) CO 2, a i r ,  and He, 

d = 2.2 mm;  6,2,  9)CO2, a i r ,  and He, d = 0.78 ram. 

Let us consider  the following s impl i f ied model~ A 
bed of spher ica l  pa r t i c l e s  moves along a s ta t ionary  

fiat surface.  There is no re la t ive  motion of the pa r t i -  
c les ,  and the bed may be regarded as a moving porous 
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Fig. 2. Hea t - t r ans fe r  coefficient as a function of the 
thermophys ica l  p roper t i es  of the sys tem:  1,3) for 
g lass  sphe re - f r eon  and glass  s p h e r e - a i r  sys tems  [2], 
r espec t ive ly ;  2, 4, 5) for slag pel lets  in a tmospheres  
of CO 2, a i r ,  and He, respec t ive ly  (a, d = 2.2 mm;  

b, 1.2; c, 0~ 

plate.  No heat t r ans f e r  appears at the par t ic le  contact 
points,  but it takes place exclus ively  through the 
in te rmedia te  layers  of gas between par t ic les .  Close 
to the s ta t ionary  fiat surface there  is a thin f i lm of 
gas that tends to lag behind the motion of the bed~ 
Since the volume specific heat of the gas is severa l  
o rders  lower than that of the solid par t ic les ,  the heat 
flux ca r r i ed  away by the gas flow is smal l  and can be 
neglected.  In this case even in the boundary zone at 
the h e a t - t r a n s f e r  surface it is possible  to assume 
that there  is no re la t ive  motion of the gas in the bed 
and hence that the heat t r a n s f e r  both within the p a r -  
t icle and within the in termedia te  layer  of gas can be 

descr ibed  by the Four i e r  equation [2, 7, 9] 

0t 
- -  = a v 2 t .  
Or 

Going over  to the s ta t ionary  coordinate sys tem 
x = U~- and introducing the d imens ion less  coordinates 
x = lX, y = dr,  z = d~, we obtain 

for the par t ic les  

al 0% 0% ~ a~l 2 

and 

for the gas 

a Ud ~ Otg ( d ~2O~tg a %  _~ o2tg 

a, la O z t T J + ff- n ov 

O~t + - -  (1) 
0 ~ '  

(2) 

System (1) and (2) descr ibe  the heat t r a n s f e r  in 
the bed. We will solve the problem for the following 
ini t ia l  and boundary condit ions:  
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1) the ini t ia l  t empera tu re  of the bed (par t ic les  and 
gas) i s  constant  in space and equal to to; 

2) the h e a t - t r a n s f e r  surface has a length l in the 
d i rec t ion  of the X-axis ;  its t empera tu re  is main ta ined  
constant  and equal t o t s ;  

3) the t empera tu re  of the bed far  f rom the heating 
sur face  is constant  and equal to to; 

4) the heat t r ans f e r  at the gas - sphe re  boundary is 
descr ibed  by 

- -  g rad /=  grad tg. (3) 

The ra te  of heat t r ans fe r  at the boundary between 
the bed and the surface is 

q Xg grad tg 
a = , ( 4 )  

ts - -  to d ts - -  to 

where q is the specific heat flow through the boundary. 
The solution of the problem can be r ep resen ted  

in the form of a func t ion  of three  d imens ion less  
complexes 

Nu f(Fo; a l )  = .; , ( 5 )  
a r d 

where 

Fo -1 - - u d 2  and N u =  a d .  
la ~g 

Relation (5) is valid both for smal l  contact times,�9 
when the t empera tu re  gradient  is concentrated nea r  
the Contact points of the f i r s t  row of par t i c les ,  and for 
la rge  contact  t imes ,  when s e v e r a l  rows of par t i c les  
are heated. 

The nature  of (5) was es tabl ished by invest igat ing 
the heat t r ans f e r  between a surface and a bed of 
moving par t i c les  in var ious  a tmospheres .  

The exper imenta l  apparatus was a sealed chamber  
inside which revolved an annular  basket ,  fi l led with a 
bed of s lag pel le ts .  The exper iment  was repeated for 
three different  mean  d i ame te r s :  0.78, 1.2, and 2.2 mm.  
A flat  heating surface,  r igidly attached to the s ta t ion-  
a ry  housing, was i m m e r s e d  in the bed of par t ic les .  
This surface was 50ram deep, 14mm wide, and 2ram 
thick. The basket  revolved at a uni form speed between 
3 and 80 rpm.  The veloci ty of the bed re la t ive  to the 
heating surface was regulated by varying the speed 
of the basket.  To ensure  smal l  re la t ive  contact t imes  
with the heat ing sur face  (Fo < 0.1) three coarse  f r a c -  

t ions (mean d iamete r s  0.78, 1.2, and 2.2 mm) were  
selected.  

The he a t - t r a n s f e r  surface was a plas t ic  plate 
copper-wound with thin copper wire.  By connecting 
it  to a br idge c i rcui t ,  we could keep the t empera tu re  
constant  and m e a s u r e  the diss ipated e lec t r i ca l  power 
[8]. The apparatus and technique a re  descr ibed  in 
more  detail  in [6]. 

In a typical run the apparatus  was f i r s t  evacuated 
to a p r e s s u r e  of 1 -5  mm Hg. Then the vacuum line 
was disconnected and a valve opened to admit  gas (air ,  
CO2, or He) into the in t e r io r  cavity of the apparatus.  
An excess p r e s s u r e  of severa l  tens of m m  H20 was 
mainta ined in the apparatus to ensure  the s tabi l i ty  of 
the gas a tmosphere  in the bed during the exper iment .  

The resu l t s  of the exper iments  are presen ted  in 
Fig. 1 in the form of a graph of a as a function of the 
rec iproca l  of the contact t ime 1 / r .  We see that as 
~- decreases ,  a i nc reases ,  reaching a max imum value 
at T ~ 0.1 sec.  As the speed continues to inc rease ,  
i .e. ,  as T d iminishes  fur ther ,  ~ s ta r t s  to decrease .  
Obviously, this is re la ted  with the movement  of p a r -  
t ic les  away f r o m  the he a t - t r a n s f e r  surface at high 
speeds.  To conf i rm this assumption,  we observed 
v isual ly  the flow of par t ic les  over the heating surface 
when the la t te r  was incomplete ly  i m m e r s e d  in the bed. 
We found that with inc reas ing  basket  speed the bed 
separa tes  f rom the heating surface  and the thickness  
of the gas boundary f i lm inc reases .  

As seen  f rom Fig. 1, ~max depends both on the 
par t ic le  size and on the thermophysical  p roper t i e s  
of the gas a tmosphere .  

F r o m  the exper imenta l  data we t r ied  to de te rmine  
the behavior  of the max imum he a t - t r a n s f e r  coeffi-  
cient,  which is reached at smal l  contact t imes  and 
which no longer  depends on Fo. In accordance with (5) 
the data were cor re la ted  in the following form:  

We f i r s t  invest igated t h e  var ia t ion  of Numax with 
the thermophysica l  charac te r i s t i c s  of the sys tem 
ag/a .  Figure  2 gives NUmax = f ( a g / a )  for  the three  
par t ic le  d iamete r s  and the three  gases used, and also 
values  of Numax obtained f rom a computer  ca lcula-  
tion [2] for glass  s p h e r e - a i r  and glass  sphe re - f r eon  
sys tems .  In a logar i thmic  scale  the calculated and 
exper imenta l  points for par t ic les  2.2 m m  in d iamete r  
l ie  on a s t ra ight  l ine with a slope of 0.26. For  p a t t i -  
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Fig. 3. Hea t - t r ans fe r  ra te  I = Nu[(ag/a}~ ~ as a function 
of contact t ime for a bed of s lag pel le ts :  1, 2, 3) air ,  d = 0.78, 
1.2 and 2.2 ram; 6, 5, 4) CO2, d = 0 . 7 8 ,  1.2, and 2.2 mm;  

9, 8 ,7}He,  d = 0 . 7 8 ,  1.2, and 2 . 2 r a m .  
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cles 0.78 and 1.2 m m  in d iamete r  the Numax values 
are also, in f i r s t  approximation,  cor re la ted  by a 
power function with the same exponent m = 0.26. 

S imi la r ly  we invest igated the dependence of the 
max imum h e a t - t r a n s f e r  coefficient on the d imens ion-  
less  length 1/d of the heat ing surface.  The resu l t s  can 
be p resen ted  in the following form:  

Numa x \ - ~ - ]  ~ - ]  , (6) 

which is valid when 

l 
4 .7< a--L<481 and 6 . 4 < ~ - < 1 8 .  

a 

The exper imenta l  data for the ent i re  range  of 
va r i a t ion  in Fo and for all three  gases and all three  
par t i c le  d imens ions  are p resen ted  in Fig. 3 as a 
function of the Fo number  in accordance with re la t ion  
(5) (in logar i thmic  scale),  

The data are sa t i s fac tor i ly  grouped about the same 
curve with a max imum sca t t e r  of 30%, which is 
per fec t ly  acceptable for the sys tem in quest ion.  

The exper iments  conf i rm the theore t ica l  conclusion 
that as the contact t ime (Fo) decreases ,  the heat -  
t r a n s f e r  coefficient i nc reases ,  tending to a l imi t .  
In our case this l imi t  was reached on the in te rva l  
Fo = 0.08-0.008.  

F rom an analys is  of the data we found the value 
A = 90 for the coefficient in Eq. (6). 

Express ion  (6) can be used to calculate  the ra te  
of heat t r a n s f e r  between a moving or agitated bed of 
pa r t i c l e s  and a surface,  if the contact t ime is given 
by Fo < 0.08. 

The exper imenta l  value of the Fo number ,  c o r r e -  
sponding to Numax, is close to the calculated value 
(Fo = 0~ obtained for the individual  sphere -wal l  
sys tem [2]. 

Express ion  (6) also pe rmi t s  a quali tat ive analys is  
of the law of heat  t r a n s f e r  between a fluidized bed and 
a h e a t - t r a n s f e r  surface.  

NOTATION 

x, y, and z are  d imens ion less  coordinates ;  d and l 
are  the par t ic le  d iamete r  and the length of heating 
sur face ;  t o and ts are the t empera tu re s  of the bed and 
the surface,  respect ive ly ,  ~ q is the specific heat 
flux; Nu and Fo are  the Nussel t  and F o u r i e r  numbers ,  
r espec t ive ly ;  T is the par t ic le  contact t ime;  a and ag 
are  the the rmal  diffusivit ies of the par t ic le  and the 
gas, respec t ive ly ;  and h and hg are the the rmal  con- 
ductivi t ies  of the par t ic le  and the gas, respect ively .  
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